Graphene oxide--polyelectrolyte nanomembranes.

نویسندگان

  • Dhaval D Kulkarni
  • Ikjun Choi
  • Srikanth S Singamaneni
  • Vladimir V Tsukruk
چکیده

Owing to its remarkable electrical, thermal, and mechanical properties, graphene, an atomic layer of carbon, is considered to be an excellent two-dimensional filler for polymer nanocomposites with outstanding mechanical strength along with the potential for excellent electrical and thermal properties. One of the critical limitations with conventional fillers is that the loading fraction required for achieving significant improvement in mechanical properties is relatively high, frequently reaching 50% for maximum strength. Here, we demonstrate that the mechanical properties of ultrathin laminated nanocomposites can be significantly enhanced by the incorporation of small amounts of a dense monolayer of planar graphene oxide (GO) flakes. Negatively charged functionalized graphene oxide layers were incorporated into polyelectrolyte multilayers (PEMs) fabricated in a layer-by-layer (LbL) assembly via Langmuir-Blodgett (LB) deposition. These LbL-LB graphene oxide nanocomposite films were released as robust freely standing membranes with large lateral dimensions (centimeters) and a thickness of around 50 nm. Micromechanical measurements showed enhancement of the elastic modulus by an order of magnitude, from 1.5 GPa for pure LbL membranes to about 20 GPa for only 8.0 vol % graphene oxide encapsulated LbL membranes. These tough nanocomposite PEMs can be freely suspended over large (few millimeters) apertures and sustain large mechanical deformations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyelectrolyte-graphene Nanocomposites for Biosensing Applications

Due to their unique structure, the optical and mechanical properties graphene and its derivatives (e.g. graphene oxide, reduced graphene oxide) have captured the attention of a constantly increasing number of scientists with regards to biomolecule sensing. This mini review focuses on one specific type of sensor, that consisting of graphene and polyelectrolytes. Polyelectrolyte-graphene nanocomp...

متن کامل

Bend, buckle, and fold: mechanical engineering with nanomembranes.

Research on nanomembranes and graphene sheets represents the "third wave" of work on nanomaterials, following earlier studies of nanoparticles/fullerenes and, somewhat later, nanowires/nanotubes. Inorganic semiconductor nanomembranes are particularly appealing due to their materials diversity, the ease with which they can be grown with high quality over large areas, and the ability to exploit t...

متن کامل

A universal scheme to convert aromatic molecular monolayers into functional carbon nanomembranes.

Free-standing nanomembranes with molecular or atomic thickness are currently explored for separation technologies, electronics, and sensing. Their engineering with well-defined structural and functional properties is a challenge for materials research. Here we present a broadly applicable scheme to create mechanically stable carbon nanomembranes (CNMs) with a thickness of ~0.5 to ~3 nm. Monolay...

متن کامل

Programmed synthesis of freestanding graphene nanomembrane arrays.

Freestanding graphene membranes are unique materials. The combination of atomically thin dimensions, remarkable mechanical robustness, and chemical stability make porous and non-porous graphene membranes attractive for water purification and various sensing applications. Nanopores in graphene and other 2D materials have been identified as promising devices for next-generation DNA sequencing bas...

متن کامل

Fabrication of hybrid graphene oxide/polyelectrolyte capsules by means of layer-by-layer assembly on erythrocyte cell templates

A novel and facile method was developed to produce hybrid graphene oxide (GO)-polyelectrolyte (PE) capsules using erythrocyte cells as templates. The capsules are easily produced through the layer-by-layer technique using alternating polyelectrolyte layers and GO sheets. The amount of GO and therefore its coverage in the resulting capsules can be tuned by adjusting the concentration of the GO d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 4 8  شماره 

صفحات  -

تاریخ انتشار 2010